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Abstract
Sensitivity analysis results are useful both for the early de-
sign stage – where the parametric space can be substantially
reduced – but also in operating conditions, e.g. of the fu-
ture electric ship, resulting in reduced operational costs and
increased reliability. Here we discuss variance-based meth-
ods to analyze the sensitivity of stochastic electro-mechanical
systems with multirate dynamics. We present results for an
illustrative example and for a model of an integrated power
system.

1. INTRODUCTION
In the All-Electric Ship (AES), there is an increasing de-

mand for electric power for ship system automation, electri-
cal weaponry, electric propulsion, and ship service distribu-
tion. About 70% to 90% of power from the generator units
in the fully integrated power system (IPS) is consumed in the
propulsion systems [2]. Many machines and electrical com-
ponents form the power generation and propulsion drives in
the AES. As a result, sensitivity analysis that can identify the
influential and interactive parameters from a large number of
parameters is needed for the IPS designer to improve perfor-
mances of the integrated system and to prevent a cascaded
failure. Sensitivity analysis, based on the “One-At-a-Time”
(OAT) stochastic variation [9], has been shown to be able to
identify and prioritize the important parameters of an AC sub-
section in the entire IPS [6]. In addition, to further accelerate
large-scale simulation or even guide experimental studies, a
reduction of parametric space can be accomplished by fixing
the less important parameters at their nominal values.
The two main classes of techniques for ranking these in-

puts in sensitivity studies are local and global methods. The
local approach [5, 10], which relies on a partial derivative of
output with respect to input, is used to measure the sensitivity
around a local operating point. When the system has strong
nonlinearity and the input uncertainties are contained within
a wide range, the local sensitivity does not provide full infor-
mation to the IPS designer. On the other hand, the global ap-
proach examines the sensitivity from the entire range of the

parameter variations. The screening methods, which are in-
cluded in the global methods, rank the important factors and
their interaction among a large number of system parame-
ters. These screening techniques are based on OAT pertur-
bation of parameters, which directly yields the main input
effect without input interaction. Several screening methods
have been proposed in the literature, for example, the Mor-
ris method [7, 12], Cotter’s method [3], factorial experimen-
tation [1], and iterated fractional factorial design [11]. The
different aproaches have their strengths and weaknesses. The
Morris method can efficiently identify the sensitive parame-
ters when a system has a large number of inputs or parame-
ters. Only the worst-case analysis of a system is examined for
the upper and lower bounds of system variables in Cotter’s
method. In factorial experimentation, all combinations of in-
puts’ interactions as well as the main effects are evaluated at
the same time, which requires intensive computation. Iterated
fractional factor design reduces this large input-combination
computation by evaluating only important combinations. As
a result, the sensitivity indices might be biased.
In [8], four sensitivity analysis techniques for ranking the

inputs’ significance and the nonlinear and coupling effects of
inputs were studied. Two of them were based on gradient-
based analysis while the other two were based on variance-
based analysis. Gradient-based methods, while effective in
general, can be very costly and not so accurate for non-
smooth solutions. The regularity required for computing the
local gradient at one point in a parameter range to be rep-
resentative of the gradient over the entire range is not guar-
anteed nor expected for a nonlinear system like IPS. To this
end, in this paper we focus on variance-based methods and
examine their connection to gradient-basedmethods, their ac-
cuarcy, and their effectiveness in a small-scale IPS typical of
the AES.

2. SENSITIVITY ANALYSIS METHODS
A new approach to simulate the IPS subject to uncertainty

was introduced in [8] based on the concept of generalized
Polynomial Chaos (gPC) method [13]. The most efficient ap-
proach for such nonlinear systems is the collocation projec-
tion, and we will refer to the corresponding method as prob-
abilistic collocation method (PCM). This approach is as sim-



ple as the standard Monte Carlo approach but the sampling
points are specific points related to the roots of the orthogo-
nal polynomials invcolved in the expansion basis of gPC. A
more efficient extension developed in [4, 8] is based on multi-
elements (MEPCM version), where the parametric space is
further subdivided into non-overlapping subdomains (“ele-
ments”) whithin which gPC expansions are employed. An-
other useful option is the use of full-grids or sparse-grids in
PCM or in MEPCM, see [8].

2.1. Connection to gradient-based methods
In this section we make some mathematical connections

between MEPCM local variance-based sensitivity techniques
and gradient-based methods. Let us focus on a particular hy-
percube element B, a subset of the N-dimensional paramet-
ric space, written without loss of generality as the product
set∏N

i 1 x0 i h x0 i h where x0 x0 1 x0 2 x0 N is the
center of B. Suppose we have a function f C3 B and as-
sume X is a random variable uniformly distributed on B. We
will show that the variance of f X over Bi, when normalized
with the one-dimensional uniform distribution variance, ap-
proximates the norm of the gradient ∇ f x0 2 in the limit as
h 0 . This result is easily generalizable to rectangular B,
but we will assume uniform edge lengths for simplicity here.
We begin with the multi-dimensional Taylor expansion:
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Similarly, we obtain the first moment and thus the variance of
f over the element B:
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Note that h23 is the variance of the one-dimensional distribu-
tion of the underlying variable X , and
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h2
3
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The rate of convergence here is O h2 , which is independent
of N. Hence, we see that the variance-based sensitivity anal-
ysis is related to the gradient-based sensitivity analysis as in-
dicated in the above relationship.

2.2. Variance Method
The Variance method introduced here directly takes advan-

tage of the efficiency and accuracy of the PCM to identify
each input sensitivity and input interaction. This method re-
lies on a variation of the output when only one input is a
random variable instead of using the approximated gradient
to measure the sensitivity of each input. Note that here we
use the standard deviation as a sensitivity index when we re-
fer to the Variance method. First, let us define the variance
effect (VEEi) of each input on the output, y j x1 xk for
j 1 n, as:

VEE j
i Exi j σxi y

j x (1)

x1 xi 1 xi 1 xk

σxi y
j x dx1 dxi 1dxi 1 dxk

where σxi denotes the standard deviation of the j output
(y j x ) when only xi input is a random variable and the other
inputs are fixed at the collocation points in the k 1 input di-
mension. Exi j represents an expectation of all other inputs
except the xi input. Formulating an OAT variation of each in-
put in this way, the interaction of the xi input with the others,
called IEEi, can be described by

IEE j
i σxi j σxi y

j x

x1 xi 1 xi 1 xk
σxi y j x VEEi 2dx1 dxi 1dxi 1 dxk

Here σxi j denotes a standard deviation of all other inputs
except the xi input. The magnitude of IEEi can only specify
the coupling of the i parameters without taking into account
the nonlinearity of the xi term. Figure 1 demonstrates how to
obtain the elementary and coupling effects from the standard
deviation of each xi input in the case of three input parame-
ters. The computational cost to obtainVEEi is approximately
O(Nk

c k), where Nc is the number of collocation points per
direction.
This technique can be further applied to compute the sensi-

tivity of input parameters in a system of ODEs by solving Nc
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Figure 1. With Nc 4 collocation points in the full-grid
PCM, the standard deviation of the x1 input is computed at
the full-grid collocation points, where x2 and x3 are assumed
to be independent random variables, such that the elementary
effect and interaction of x1 with the other inputs can be un-
covered.

ODEs for one input at each time step; thus, with k inputs, we
need to solve a total of Nk

c ODEs for the OAT sensitivity as
well as parameter interaction. Similar to the stationary case,
we compute the standard deviation of the system integration
with respect to the xi using one-dimensional full-grid PCM,
while all other inputs are fixed at the collocation points of
the k 1-dimensional full-grid PCM. Then, we compute the
standard deviation of σxi with respect to xi j for measuring
the parameter interaction.

2.3. Inverse Variance Method
Consider the dual concept of the Variance method just

described. This technique examines the inverse of how
unimportant each input parameter is in the system output,
y j x1 xk , which is related to the first-order effect. Let us
define the first-order effect of the xi input as IVEEi, as:

IVEE j
i

1
Exi σxi j y j x

(2)

where the denominator is defined as

Exi
x1 xi 1 xi 1 xn

y x x1 xi 1 xi 1 xk

Exi j y x
2dx1 dxi 1dxi 1 dxk

where σxi j y
j x is the standard deviation of the output

when all inputs except the i input are random variables, which

is described as the negligible effect of the xi input on the out-
put. Exi represents the expectation of the i input. An inverse
of the Exi σxi j f x specifies the importance effect of the
xi input. Likewise, the coupling effect of the i input with the
other inputs can be examined from the IIEEi, defined below:

IIEE j
i σxi σxi j y

j x (3)

where σxi stands for the standard deviation of the i input.
Similar to the Variance method, IIEEi can only capture the
coupling effect of i input with the others, not the nonlinearity
associated with xi. According to these definitions, the sparse-
grid PCM can be directly employed for computingσxi j , es-
pecially for large input dimensions. Owing to the efficiency of
the full-grid PCM in a small input dimension, Exi and σxi
can be computed with the Gauss quadrature. Therefore, this
technique can provide fast convergence of IVEEi and IIEEi
accuracy with less computational cost, particularly in cases
with high input dimension. The total computational cost is
in the order of O(n L k 1 Nc k), where n L k 1 is
a number of collocation point at level, L, in k 1 input di-
mension. Thus, the computational cost of this method should
be several orders of magnitude smaller than that of the Vari-
ance method when k is large; in the Variance method only a
full-grid PCM can be used.





















  


  


  


  

Figure 2. For the full-grid PCM with Nc 4 in the first di-
rection, the standard deviation of x2 and x3 inputs is computed
at the sparse-grid collocation points, where the x1 is assumed
to be fixed at the full-grid collocation point. The inverse of the
mean of σx2 x3 with respect to x1 can identify the elementary
effect of x1, while the standard deviation of σx2 x3 with respect
to x1 specifies the coupling effect of x1 with the others.

To explain the concept of this method in a three-
dimensional input space, Figure 2 shows how to obtain the
effect of excluding the x1 input by considering the standard
deviation of x2 and x3 with fixed x1 at the full-grid collo-
cation points. The inverse of the mean of σx2 x3 f x x1 is
fixed x2 ξ1 x3 ξ2 with respect to x1 can be used to rank
the significance of the x1 input. Moreover, the standard devi-



ation of this quantity with respect to x1 identifies the coupling
effect of x1 with the other inputs.

3. RESULTS
3.1. An illustrative example
Let us first consider a simple polynomial function with xi

being random uniform variables:

y6 63x51x2 70x32x23 15x1x2x3 for 0 xi 1 (4)

In Figure 3 we plot the mean and standard deviation of the
elementary effect based on the Variance (upper plot) and In-
verse Variance (lower plot) methods. We see that the ranking
of the inputs is the same according to the VEEi and IVEEi,
respectively, and in fact they agree with results obtained with
the gradient-based methods, see [8]. The first input (x1) is the
most sensitive due to the fifth order polynomial, while the
sensitivities of x2 and x3 are ranked second and third. How-
ever, the interaction effects obtained with the two methods
are different with the Variance method closer to the gradient-
based methods but with the Inverse Variance method produc-
ing erroneous results with respect to interaction. For other
cases for example, e.g. the Morris function [8], where only
interaction terms are involved but not powers of the same
variable, both methods (i.e., including the Inverse Variance
method) give correct results for the interaction effect as well.
In terms of computation time, the Inverse Variance method is
at least an order of magnitude faster.
From this and several other examplewith high-dimensional

functions and parametric ODEs presented in [8] we have
drawn the following conclusions:

Variance Method: The relative magnitude of VEEi can
rank the sensitivity of inputs. The magnitude of IEEi captures
only the coupling of inputs. It does not include the inputs’
nonlinearity because of the OAT variance measurement of a
single random variable. Using the efficiency of the full-grid
PCM, the convergence rate of the sensitivity index is expo-
nential in a small dimension problem; however, this rate is
sensitive to the function’s monotonicity.

Inverse Variance Method: The relative magnitude of
IVEEi can correctly rank the sensitivity of inputs as well.
Similar to the Variance method, the magnitude of IIEEi can
capture only the coupling of inputs, but not the inputs’ non-
linearity. Furthermore, the value of IIEEi is also sensitive to
the function’s monotonicity due to the possibility of cancel-
lation effect in computing the standard deviation of the n 1
inputs in the n-dimensional problem. The main advantage of
this technique is its rapid convergence rate of the sensitiv-
ity index and its independence in convergence characteristic
from any kind of the inputs’ nonlinearity. The drawback is
that it does not give the correct interaction effect and hence it
leads to erroneous trajectories in solving parametric ODEs.
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Table 1. Parameters of a 200-hp induction machine

Parammeters in [p.u]
rs Xls Xm Xlr rr H
0.01 0.0655 3.225 0.0655 0.0261 0.922

3.2. An open-loop induction machine with an
infinite bus

Here we analyze the sensitivity of a model IPS with ten
input parameters in the configuration shown in Figure 4.
The machine equations are expressed in a qd0-synchronous
reference frame. The equations of this three-phase system
with quadratic nonlinearities consist of seven state variables:
three rotor reactances [ψ e

qr ψ
e
dr ψ

e
0r], the rotor’s angular ve-

locity [ωr], and three stator or tie-line currents [ieqt iedt i
e
0t ]

(see Equation 4-23 to 4-29 in [8]). Two states, ψ e
0r and ie0t ,

are uncoupled from the others. All parameters, given in Ta-
ble 1, are lumped into αi variables for a simplification of state
equations. The detailed derivation of system modeling can be
found in [8]. The start-up dynamics of a 200-hp induction
machine in an open-loop configuration, considered here for
t 0 3 seconds, includes fast transient dynamics from elec-
trical components, stator and rotor windings, and slow dy-
namics of a mechanical subsystem, a rotor inertia.

Figure 4. A one-line diagram of the induction machine con-
nected to the infinite bus through a RL tie line.

Because of the five coupled output variables,
[ψ e

qr ψ
e
dr ωr i

e
qt i edt ], the trajectories of 10 input param-

eters, including [rs xls xm xlr rr rt Lt Mt Tload H], are
shown only for the d-axis tie line current or i edt state shown
in Figure 5. All these inputs are assumed to be independent
random variables with 10 percent variation from their
mean or nominal values. Using the Variance method, the
normalized sensitivity trajectories of these 10 inputs indicate
which inputs have larger impact on the output, such as i edt ,
as shown in Figure 5. In particular, i edt is very sensitive to
multiple inputs, especially xls and xlr in the first second
and rr right before reaching the synchronous speed. These
sensitivity indices reflect the multi rate dynamics associated

with the induction machine. Initially during the first second,
the stator and rotor windings attempt to accelerate the rotor
up to speed; therefore, the reactance of these windings,
xls and xlr, should be the most sensitive parameters during
the electrical transient regime. After the electrical transient
dies out, the rotor inertia, H, and mechanical torque load,
Tload , also have significant influence on the tie line or stator
current during [1,2] seconds, where the mechanical time
scale dominates. In terms of input coupling, all these five
parameters (rr xls xlr H Tload) exhibit strong interaction
with other inputs. At each time step, the IEEi versus VEEi
plot can be used to directly rank the inputs’ sensitivity as
well as interaction, as shown in Figure 6 during the electrical
transient (upper) and during the mechanical transient (lower).
Notice that rt , Lt , and Mt from the tie line and xm from the
induction machine have almost a negligible effect on this i edt
output because the infinite bus absorbs all variations in the
tie line’s parameters. The mutual flux leakage, xm, is usually
about 100 times larger than the flux leakage of the stator and
rotor windings; thus, with the same percentage of fluctuation,
xm is less sensitive than xls and xlr.
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Figure 5. For the y5 variable or i edt , VEEi and IEEi trajecto-
ries of all 10 input parameters as a function of time, t 0 3
second, using the Variance method with Nc d 20.

To summarize the i input sensitivity on all j system outputs
over the entire time interval in a two-dimensional figure, we
need to define an average sensitivity index as the ES2 j i
and an average interaction index as the SS2 j i , using the
L2 norm:

ES2 j i E EEi 2 and SS2 j i E EEi 2 σ EEi 2 2
(5)

However, because some parameters might have strong influ-
ences only within a specified time interval, the peak sen-
sitivity ( ES∞ j i ) and interaction indices ( SS∞ j i ), de-
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ance method, when time is fixed at 0.3 (uuper plot) and 1.5
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transients dominate, respectively.

fined below, must be considered along with the ES2 j i and
SS2 j i .

ES∞ j i E EEi ∞ and SS∞ j i E EEi 2 σ EEi 2 ∞

(6)
Therefore, all the normalized sensitivity trajectories of the

induction machines with 5 coupled outputs and 10 input pa-
rameters can be obtained by plots of ES2 j i for ranking the
input sensitivity, and of SS2 j i for ranking the input inter-
action; e.g., see plot of ES2 j i between 0 and 3 seconds in
Figure 7. Notice that the y2 or ψ e

dr output is the most sensi-
tive, particularly to the electrical parameters, among all the
outputs.
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Figure 7. ES2 j i plot using the Variance method for rank-
ing the input sensitivity. The order of xi inputs on the x-axis
are [rs xls xm xlr rr rt Lt Mt Tload H] from left to right, and
the order of y j outputs on the y-axis are [ψ e

qr ψ
e
dr ωr i
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from top to bottom.

4. SUMMARY
Sensitivity analysis of integrated power systems (IPS) can

be very helpful in ranking the most influential inputs and
their interactions. This information can be used in construct-
ing reduced-order models, guide experimental work, and se-
lect the proper parameter range in the preliminary stages of
designing an IPS. The variance-based methods we presented
here do not require any gradient evaluation, and hence they
provide an accurate and efficient way of quantifying the sen-
sitivity indices of IPS. Having specified the most important
parameters, it may then be desirable to also quantify the range
within a specific parameter that is the most critical in the
response of the IPS. To this end, the multi-element propa-
bilistic collocation method (MEPCM) developed in [4, 8] can
be employed in conjunction with an adaptive algorithm that
will generate small subdomains (i.e., elements) in regions of
the parameter space where the local variance (e.g., integrated



over an element) is maximum. This algorithm is straightfor-
ward to implement, and our results today show that it is also
very effective.
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